查看“信号与系统”的源代码
←
信号与系统
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
== 信号分类 == == 卷积 == 1.与单位冲激信号和单位阶跃信号的卷积 ①<math>f\left ( t \right ) *\delta \left ( t \right ) =f\left ( t \right ) </math> ②<math>f\left ( t \right ) *\delta \left ( t -t_{0} \right ) =f\left ( t -t_{0} \right )</math> ③<math>f\left ( t\right ) *\delta '\left ( t \right )=f'\left ( t \right )</math> ④<math>f\left ( t\right ) *\delta ^{\left ( n \right ) } \left ( t \right )=f^{\left ( n \right ) } \left ( t \right )</math> ⑤<math>f\left ( t\right ) *\varepsilon \left ( t \right ) =\int_{-\infty}^{t} f\left ( \tau \right )d\tau</math> ⑥<math>\varepsilon \left ( t \right )*\varepsilon \left ( t \right )=t\varepsilon \left ( t \right )=r\left ( t \right )</math> ⑦<math>f\left ( t \right )*r\left (t\right)=\int_{-\infty}^{t}\left [\int_{-\infty}^{k}f\left(\tau\right )d\tau\right ] dk</math> 2.与单位冲激序列和单位阶跃序列的卷积 ①<math>f\left ( k \right ) *\delta \left ( k \right ) =f\left ( k \right ) </math> ②<math>f\left ( k \right ) *\delta \left ( k-k_{0} \right ) =f\left ( k-k_{0} \right ) </math> ③<math>f\left ( k \right ) *\varepsilon \left ( k \right ) =\sum_{m=0}^{+\infty} f\left ( k-m \right ) =\sum_{m=-\infty}^{n}f\left ( m \right ) </math> == 傅里叶变换 == === 常见信号的傅里叶变换 === (1)冲激函数<math>\delta \left ( t \right ) </math> <math>\mathscr{F}\left[\delta \left(t\right)\right]=\int_{-\infty}^{+\infty} \delta \left ( t \right ) e^{-j\omega t} dt=\int_{-\infty}^{+\infty} \delta \left ( t \right )=1 </math> (2)冲击偶函数<math>\delta' \left ( t \right ) </math> <math>\mathscr{F}\left[\delta' \left(t\right)\right]=\int_{-\infty}^{+\infty} \delta' \left ( t \right ) e^{-j\omega t} dt=-\frac{d}{dt}\left ( e^{-j\omega t}\right )\bigg|_{t=0} =j\omega </math> (3)门函数<math>g_{\tau }\left(t\right)</math> <math>\mathscr{F}\left [ g_{\tau }\left(t\right)\right] =\int_{-\infty}^{+\infty} g_{\tau }\left(t\right)e^{-j\omega t}dt=\int_{-\frac{\tau }{2} }^{\frac{\tau}{2}} e^{-j\omega t} dt=\frac{e^{-j\omega t} }{-j\omega} \bigg|^{\frac{\tau }{2} }_{-\frac{\tau }{2} }= \frac{e^{-j\omega \frac{\tau }{2} }-e^{j\omega \frac{\tau }{2} } }{-j\omega } = \frac{2}{\omega }\cdot \frac{e^{j\omega \frac{\tau }{2} }-e^{-j\omega \frac{\tau }{2} } }{2j} =\frac{2\sin \frac{\omega \tau }{2} }{\omega } =\tau Sa\left ( \frac{\omega \tau }{2} \right )</math> (4)单边指数信号<math>e^{-at} \varepsilon \left ( t \right ) </math>(a为正实数) <math>\mathscr{F}\left [ e^{-at} \varepsilon \left ( t \right ) \right ]=\int_{-\infty}^{+\infty} e^{-at} \varepsilon \left ( t \right )\cdot e^{-j\omega t} dt=\int_{0}^{+\infty}e^{-\left ( a+j\omega \right ) } dt=\frac{e^{-\left ( a+j\omega \right )t } }{-\left ( a+j\omega \right )}\bigg|^{+\infty}_{0}=\frac{1}{a+j\omega } =\frac{a-j\omega }{a^{2}+\omega ^{2} } </math> <math>\left|F\left(\omega \right )\right |=\sqrt{\frac{1^{2} }{a^{2}+\omega^{2}}}=\frac{1}{\sqrt{{a^{2}+\omega^{2}}}} </math> === 常用信号的傅里叶变换表 === {| class="wikitable" |- | |时域 |频域 |- |冲激信号 |<math>\delta \left ( t \right ) </math> |<math>1</math> |- |冲激偶信号 |<math>\delta '\left ( t \right ) </math> |<math>j\omega </math> |- |阶跃信号 |<math>\varepsilon \left ( t \right ) </math> |<math>\pi \delta \left (\omega \right ) +\frac{1}{j\omega } </math> |- |斜升信号 |<math>r\left ( t \right ) =t\varepsilon \left ( t \right ) </math> |<math>j\pi \delta'\left ( \omega \right ) -\frac{1}{\omega ^{2} } </math> |- |常数 |<math>C(直流分量)</math> |<math>2\pi C\delta \left ( \omega \right ) </math> |- |门函数 |<math>g_{\tau} \left ( t \right ) </math> |<math>\tau Sa\left ( \frac{\omega \tau}{2} \right ) </math> |- |符号函数 |<math>sgn\left ( t \right ) </math> |<math>\frac{2}{j\omega } </math> |- |单边指数信号 |<math>e^{-at} \varepsilon \left ( t \right ) \;\;\left ( a>0 \right )</math> |<math>\frac{1}{a+j\omega } </math> |- |双边指数信号 |<math>e^{-a\left | t \right | } \varepsilon \left ( t \right ) \;\;\left ( a>0 \right )</math> |<math>\frac{2a}{a^{^{2} } +\omega ^{2} } </math> |- |复指数信号 |<math>e^{-j\omega _{0}t } </math> |<math>2\pi \delta \left ( \omega +\omega _{0} \right ) </math> |- |余弦信号 |<math>\cos \left ( w_{0}t \right ) </math> |<math>\pi \left [ \delta \left ( \omega +\omega _{0} \right )+\delta \left ( \omega -\omega _{0} \right ) \right ] </math> |- |正弦信号 |<math>\sin \left ( w_{0}t \right ) </math> |<math>j\pi \left[\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega -\omega _{0} \right)\right]</math> |- |抽样信号 |<math>Sa\left ( at \right ) </math> |<math>\frac{\pi }{a} g_{2a} \left ( \omega \right ) </math> |- |标准一次函数 |<math>t</math> |<math>j2\pi \delta '\left ( \omega \right ) </math> |- |标准反比例函数 |<math>\frac{1}{t} </math> |<math>-j\pi sgn\left( \omega \right )</math> |- |余弦函数 |<math>\cos \left ( \omega_{0}t+\varphi \right )</math> |<math>\pi \left [ \delta \left ( \omega +\omega _{0} \right ) e^{-j\varphi }+ \delta \left ( \omega -\omega _{0} \right )e^{j\varphi }\right ] </math> |- |正弦函数 |<math>\sin \left ( \omega_{0}t+\varphi \right )</math> |<math>j\pi \left [ \delta \left ( \omega +\omega _{0} \right ) e^{-j\varphi }-\delta \left ( \omega -\omega _{0} \right )e^{j\varphi }\right ] </math> |- |冲激序列 |<math>\delta _{\tau }\left ( t \right ) =\sum_{n=-\infty}^{\infty} \delta \left ( t-nT_{1} \right ) </math> |<math>\omega _{1} \sum_{n=-\infty}^{\infty} \delta \left ( \omega -n\omega _{1} \right ) </math> |} == 拉普拉斯变换 == === 常用信号的拉氏变换 === (1)阶跃信号<math>\varepsilon \left ( t \right )</math> <math>\mathscr{L}\left [ \varepsilon \left ( t \right ) \right ] =\int_{0}^{+\infty} \varepsilon \left ( t \right )e^{-st} dt=\int_{0}^{\infty} e^{-st} dt=\frac{e^{-st} }{-s} \bigg|^{\infty} _{0} =\frac{1}{s} </math> === 常用信号的拉普拉斯变换表 === {| class="wikitable" |- | |时域 |s域 |- |冲激信号 |<math>\delta \left ( t \right ) </math> |1 |- |阶跃信号 |<math>\varepsilon \left ( t \right ) </math> |<math>\frac{1}{s} </math> |- |单边指数信号 |<math>e^{-at} \varepsilon \left ( t \right ) </math> |<math>\frac{1}{s+a} </math> |- |延时冲激信号 |<math>\delta \left ( t-t_{0} \right )</math> |<math>e^{-st_{0} } </math> |- |冲激信号求导 |<math>\delta ^{\left ( n \right ) } \left ( t \right )</math> |<math>s^{n} </math> |- |幂函数 |<math>t^{n} \varepsilon \left ( t \right )</math> |<math>\frac{n!}{s^{n+1} } </math> |- |正弦信号 |<math>\sin t\;\varepsilon \left ( t \right )</math> |<math>\frac{\omega }{s^{2+}\omega ^{2} } </math> |- |余弦信号 |<math>\cos t\;\varepsilon \left ( t \right )</math> |<math>\frac{s}{s^{2+}\omega ^{2} } </math> |- | |<math>t\sin t\;\varepsilon \left ( t \right )</math> |<math>\frac{2\omega s}{\left ( s^{2}+\omega ^{2} \right )^{2} } </math> |- | |<math>t\cos t\;\varepsilon \left ( t \right )</math> |<math>\frac{s^{2}-\omega ^{2}}{\left ( s^{2}+\omega ^{2} \right )^{2} } </math> |- | |<math>\sum_{n=0}^{\infty} \delta \left ( t-nT \right ) </math> |<math>\frac{1}{1-e^{-sT} } </math> |} == z变换 == === 常用序列的z变换表 === {| class="wikitable" |- | |时域 |z区域 |- |冲激序列 |<math>\delta \left ( k \right ) </math> |<math>1</math> |- |阶跃序列 |<math>\varepsilon \left ( k \right ) </math> |<math>\frac{z}{z-1}\;\;\;\left | z \right | >1</math> |- |幂函数序列 |<math>a^{k} \varepsilon \left ( k \right ) </math> |<math>\frac{z}{z-a} \;\;\;\left | z \right | > \left | a \right | </math> |- |斜升序列 |<math>k\varepsilon \left ( k \right ) </math> |<math>\frac{z}{\left ( z-1 \right )^{2} } \;\;\;\left | z \right | >1</math> |- | |<math>\frac{k\left ( k-1 \right ) }{2} \varepsilon \left ( k \right ) </math> |<math>\frac{z}{\left ( z-1 \right )^{3} }\;\;\;\left | z \right | >1 </math> |- | |<math>\frac{k\left ( k-1 \right )\left ( k-2 \right ) }{3!} \varepsilon \left ( k \right )</math> |<math>\frac{z}{\left ( z-1 \right )^{4} }\;\;\;\left | z \right | >1</math> |- | |<math>\frac{k\left ( k-1 \right )\cdots \left ( k-m+1 \right ) }{m!} \varepsilon \left ( k \right )</math> |<math>\frac{z}{\left ( z-1 \right )^{m+1} }\;\;\;\left | z \right | >1</math> |- | |<math>\frac{1}{a^{m} } \cdot a^{k }\cdot \frac{k\left ( k-1 \right )\cdots \left ( k-m+1 \right ) }{m!} \varepsilon \left ( k \right )</math> |<math>\frac{z}{\left ( z-a \right )^{m+1} }\;\;\;\left | z \right | > \left | a \right |</math> |- |指数序列 |<math>e^{jk\omega _{0} } \varepsilon \left ( k \right )</math> |<math>\frac{z}{z-e^{j\omega _{0} } }\;\;\;\left | z \right | >1</math> |- |正弦序列 |<math>\sin \left ( \omega _{0} k \right ) \varepsilon \left ( k \right )</math> |<math>\frac{2\sin \omega _{0} }{z^{2}-2z\cos \omega _{0}+1 } \;\;\;\left | z \right | >1</math> |- |余弦序列 |<math>\cos \left ( \omega _{0} k \right ) \varepsilon \left ( k \right )</math> |<math>\frac{z^{2}-z\cos \omega _{0} }{z^{2}-2z\cos \omega _{0}+1 } \;\;\;\left | z \right | >1</math> |- | |<math>-\varepsilon \left ( -k -1\right )</math> |<math>\frac{z}{z-1}\;\;\;\left | z \right | <1</math> |- | |<math>-k\varepsilon \left ( -k -1\right )</math> |<math>\frac{z}{\left ( z-1 \right )^{2} } \;\;\;\left | z \right | <1</math> |}
返回
信号与系统
。
导航菜单
个人工具
创建账号
登录
命名空间
页面
讨论
大陆简体
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
上传文件
工具
链入页面
相关更改
特殊页面
页面信息