高等数学:修订间差异

来自Hyacinth
跳转到导航 跳转到搜索
删除的内容 添加的内容
流火qwq留言 | 贡献
无编辑摘要
流火qwq留言 | 贡献
无编辑摘要
第14行: 第14行:
!<math>\lim_{\bigtriangleup \to 0} \left ( 1+\bigtriangleup \right ) ^{\frac{1}{\bigtriangleup } } =e</math>
!<math>\lim_{\bigtriangleup \to 0} \left ( 1+\bigtriangleup \right ) ^{\frac{1}{\bigtriangleup } } =e</math>
|}
|}
== 泰勒中值定理 ==
== 泰勒公式 ==
如果函数<math>f\left ( x \right )</math>在<math>x=x_{0} </math>的领域内具有n+1阶导数则
<math>f\left(x\right) =f\left( x_{0} \right)+f'\left ( x_{0}\right)\left(x-_{0}\right )+\cdots+\frac{f^{\left(n\right)}\left( x_{0}\right )}{n!}\left(x-x_{0}\right )^{n}+R_{n}\left(x\right ) </math>

其中<math>\xi </math>介于<math>x</math>与<math>x_{0} </math>之间,<math>R_{n}\left(x\right ) =\frac{f^{\left(n+1\right)}\left( \xi \right)}{\left(n+1\right)!}\left(x-x_{0}\right)^{n+1}</math>称之为拉格朗日余项,余项<math>R_{n}\left(x\right)</math>也可以表示为<math>R_{n}\left(x\right)=o\left(\left(x-x_{0}\right)^{n}\right )</math>。


(1)当<math>x_{0}=0</math>时,<math>f\left ( x \right ) =f\left ( 0 \right ) +f^{'} \left ( 0 \right ) x+\cdots +\frac{f^{\left(n\right)}\left(0\right)}{n!}\left(x\right)^{n}+R_{n} \left ( x \right ) </math>称为麦克劳林公式。

(2)常用的麦克劳林公式:

1.<math>e^{x} =1+x+\frac{x^{2} }{2!} +\cdots +\frac{x^{n} }{n!} + o \left ( x^{n} \right ) </math>

== 不定积分常用三角函数公式 ==
== 不定积分常用三角函数公式 ==
{| class="wikitable"
{| class="wikitable"

2024年10月3日 (四) 21:43的版本

极限

[math]\displaystyle{ x\to 0 }[/math]时,常用的等价无穷小

(1)[math]\displaystyle{ x\sim \sin x\sim\tan x\sim\arcsin x\sim\arctan x\sim\ln_{}{\left ( 1+x \right ) } \sim e^{x} -1 }[/math]

(2)[math]\displaystyle{ 1-\cos x\sim \frac{x^{2}}{2} ,1-\cos ^{a} x\sim\frac{a}{2} x^{2} }[/math]

(3)[math]\displaystyle{ \left ( 1+x \right ) ^{a} -1\sim ax }[/math]

(4)[math]\displaystyle{ a^{x} -1\sim x\ln_{}{a} }[/math]

[math]\displaystyle{ \lim_{\bigtriangleup \to 0} \frac{\sin \bigtriangleup }{\bigtriangleup } =1 }[/math] [math]\displaystyle{ \lim_{\bigtriangleup \to 0} \left ( 1+\bigtriangleup \right ) ^{\frac{1}{\bigtriangleup } } =e }[/math]

泰勒公式

如果函数[math]\displaystyle{ f\left ( x \right ) }[/math][math]\displaystyle{ x=x_{0} }[/math]的领域内具有n+1阶导数则 [math]\displaystyle{ f\left(x\right) =f\left( x_{0} \right)+f'\left ( x_{0}\right)\left(x-_{0}\right )+\cdots+\frac{f^{\left(n\right)}\left( x_{0}\right )}{n!}\left(x-x_{0}\right )^{n}+R_{n}\left(x\right ) }[/math]

其中[math]\displaystyle{ \xi }[/math]介于[math]\displaystyle{ x }[/math][math]\displaystyle{ x_{0} }[/math]之间,[math]\displaystyle{ R_{n}\left(x\right ) =\frac{f^{\left(n+1\right)}\left( \xi \right)}{\left(n+1\right)!}\left(x-x_{0}\right)^{n+1} }[/math]称之为拉格朗日余项,余项[math]\displaystyle{ R_{n}\left(x\right) }[/math]也可以表示为[math]\displaystyle{ R_{n}\left(x\right)=o\left(\left(x-x_{0}\right)^{n}\right ) }[/math]


(1)当[math]\displaystyle{ x_{0}=0 }[/math]时,[math]\displaystyle{ f\left ( x \right ) =f\left ( 0 \right ) +f^{'} \left ( 0 \right ) x+\cdots +\frac{f^{\left(n\right)}\left(0\right)}{n!}\left(x\right)^{n}+R_{n} \left ( x \right ) }[/math]称为麦克劳林公式。

(2)常用的麦克劳林公式:

1.[math]\displaystyle{ e^{x} =1+x+\frac{x^{2} }{2!} +\cdots +\frac{x^{n} }{n!} + o \left ( x^{n} \right ) }[/math]

不定积分常用三角函数公式

[math]\displaystyle{ \left ( \sin x \right ) '=\cos x }[/math] [math]\displaystyle{ \int \cos x\;dx=\sin x+C }[/math]
[math]\displaystyle{ \left ( \cos x \right ) '=-\sin x }[/math] [math]\displaystyle{ \int \sin x\;dx=-\cos x+C }[/math]
[math]\displaystyle{ \left ( \tan x \right )'=\sec^2 x }[/math] [math]\displaystyle{ \int \sec ^{2} x\;dx=\tan x+C }[/math]
[math]\displaystyle{ \left ( \sec x \right )'=\sec x\,\tan x }[/math] [math]\displaystyle{ \int \sec x\tan x\;dx=\sec x+C }[/math]
[math]\displaystyle{ \left ( \cot x \right )'=-\csc^2 x }[/math] [math]\displaystyle{ \int \csc ^{2} x\;dx=-\cot x+C }[/math]
[math]\displaystyle{ \left ( \csc x \right )'=- \csc x\,\cot x }[/math] [math]\displaystyle{ \int \csc x\cot x\;dx=-\csc x+C }[/math]
[math]\displaystyle{ \int \tan x\;dx=\ln_{}{\left | \sec x+\sec x \right | } +C=\ln_{}{\left | \sec x \right | } +C }[/math]
[math]\displaystyle{ \int \sec x\;dx=\ln_{}{\left | \sec x+\tan x \right | } +C }[/math]
[math]\displaystyle{ \int \cot x\;dx=-\ln_{}{\left | \sec x+\sec x \right | }+C =-\ln_{}{\left | \sin x \right | } +C }[/math]
[math]\displaystyle{ \int \csc x\;dx=-\ln_{}{\left | \csc x+\cot x \right | } +C }[/math]
[math]\displaystyle{ \int \sec ^{3} x\;dx=\frac{1}{2} \left ( \sec x\tan x+\ln_{}{\left | \sec x+\tan x \right | } \right ) +C }[/math]
[math]\displaystyle{ \int \csc ^{3} x\;dx=-\frac{1}{2}\left ( \csc x \cot x +\ln_{}{\left | \csc x+\cot x \right | } \right) +C }[/math]
[math]\displaystyle{ \int \frac{dx}{\sqrt{1-x^{2}}}=\arcsin x+C }[/math] [math]\displaystyle{ \int \frac{dx}{\sqrt{a^{2}-x^{2} } }= \arcsin \frac{x}{a} +C }[/math]
[math]\displaystyle{ \int \frac{dx}{1+x^{2} } =\arctan x+C }[/math] [math]\displaystyle{ \int \frac{dx}{a^{2}+ x^{2}} =\frac{1}{a} \arctan \frac{x}{a}+C }[/math]
[math]\displaystyle{ \int \frac{dx}{x^{2}-a^{2} } =\frac{1}{2a} \ln_{}{\left |\frac{x-a}{x+a} \right | } +C }[/math] [math]\displaystyle{ \int \frac{dx}{\sqrt{x^{2}\pm a^{2} } } =\ln_{}{\left | x+\sqrt{x^{2}\pm a^{2}} \right | } +C }[/math]
[math]\displaystyle{ \int \sqrt{a^{2}-x^{2} }\;dx=\frac{a^{2} }{2}\arcsin \frac{x}{a}+\frac{x}{2}\sqrt{a^{2}-x^{2} }+C }[/math]