高等数学:修订间差异
删除的内容 添加的内容
无编辑摘要 |
无编辑摘要 |
||
第14行:
!<math>\lim_{\bigtriangleup \to 0} \left ( 1+\bigtriangleup \right ) ^{\frac{1}{\bigtriangleup } } =e</math>
|}
== 泰勒
如果函数<math>f\left ( x \right )</math>在<math>x=x_{0} </math>的领域内具有n+1阶导数则
<math>f\left(x\right) =f\left( x_{0} \right)+f'\left ( x_{0}\right)\left(x-_{0}\right )+\cdots+\frac{f^{\left(n\right)}\left( x_{0}\right )}{n!}\left(x-x_{0}\right )^{n}+R_{n}\left(x\right ) </math>
其中<math>\xi </math>介于<math>x</math>与<math>x_{0} </math>之间,<math>R_{n}\left(x\right ) =\frac{f^{\left(n+1\right)}\left( \xi \right)}{\left(n+1\right)!}\left(x-x_{0}\right)^{n+1}</math>称之为拉格朗日余项,余项<math>R_{n}\left(x\right)</math>也可以表示为<math>R_{n}\left(x\right)=o\left(\left(x-x_{0}\right)^{n}\right )</math>。
(1)当<math>x_{0}=0</math>时,<math>f\left ( x \right ) =f\left ( 0 \right ) +f^{'} \left ( 0 \right ) x+\cdots +\frac{f^{\left(n\right)}\left(0\right)}{n!}\left(x\right)^{n}+R_{n} \left ( x \right ) </math>称为麦克劳林公式。
(2)常用的麦克劳林公式:
1.<math>e^{x} =1+x+\frac{x^{2} }{2!} +\cdots +\frac{x^{n} }{n!} + o \left ( x^{n} \right ) </math>
== 不定积分常用三角函数公式 ==
{| class="wikitable"
|