高等数学:修订间差异
无编辑摘要 |
|||
第71行: | 第71行: | ||
{| class="wikitable" |
{| class="wikitable" |
||
|- |
|- |
||
|<math>\sin \left ( \alpha |
|<math>\sin \left ( \alpha + \beta \right ) =\sin \alpha \cos \beta+ \cos \alpha\sin \beta</math> |
||
| |
|||
|- |
|||
|<math>\sin \left ( \alpha - \beta \right ) =\sin \alpha \cos \beta- \cos \alpha\sin \beta</math> |
|||
|- |
|- |
||
|<math>\cos \left ( \alpha+\beta \right ) =\cos \alpha \cos \beta -\sin \alpha \sin \beta </math> |
|<math>\cos \left ( \alpha+\beta \right ) =\cos \alpha \cos \beta -\sin \alpha \sin \beta </math> |
||
| |
|||
|- |
|- |
||
|<math>\cos \left ( \alpha-\beta \right ) =\cos \alpha \cos \beta+\sin \alpha \sin \beta </math> |
|<math>\cos \left ( \alpha-\beta \right ) =\cos \alpha \cos \beta+\sin \alpha \sin \beta </math> |
2024年10月5日 (六) 22:56的版本
极限
当[math]\displaystyle{ x\to 0 }[/math]时,常用的等价无穷小
(1)[math]\displaystyle{ x\sim \sin x\sim\tan x\sim\arcsin x\sim\arctan x\sim\ln_{}{\left ( 1+x \right ) } \sim e^{x} -1 }[/math]
(2)[math]\displaystyle{ 1-\cos x\sim \frac{x^{2}}{2} ,1-\cos ^{a} x\sim\frac{a}{2} x^{2} }[/math]
(3)[math]\displaystyle{ \left ( 1+x \right ) ^{a} -1\sim ax }[/math]
(4)[math]\displaystyle{ a^{x} -1\sim x\ln_{}{a} }[/math]
[math]\displaystyle{ \lim_{\bigtriangleup \to 0} \frac{\sin \bigtriangleup }{\bigtriangleup } =1 }[/math] | [math]\displaystyle{ \lim_{\bigtriangleup \to 0} \left ( 1+\bigtriangleup \right ) ^{\frac{1}{\bigtriangleup } } =e }[/math] |
---|
泰勒公式
如果函数[math]\displaystyle{ f\left ( x \right ) }[/math]在[math]\displaystyle{ x=x_{0} }[/math]的领域内具有n+1阶导数则 [math]\displaystyle{ f\left(x\right) =f\left( x_{0} \right)+f'\left ( x_{0}\right)\left(x-_{0}\right )+\cdots+\frac{f^{\left(n\right)}\left( x_{0}\right )}{n!}\left(x-x_{0}\right )^{n}+R_{n}\left(x\right ) }[/math]
其中[math]\displaystyle{ \xi }[/math]介于[math]\displaystyle{ x }[/math]与[math]\displaystyle{ x_{0} }[/math]之间,[math]\displaystyle{ R_{n}\left(x\right ) =\frac{f^{\left(n+1\right)}\left( \xi \right)}{\left(n+1\right)!}\left(x-x_{0}\right)^{n+1} }[/math]称之为拉格朗日余项,余项[math]\displaystyle{ R_{n}\left(x\right) }[/math]也可以表示为[math]\displaystyle{ R_{n}\left(x\right)=o\left(\left(x-x_{0}\right)^{n}\right ) }[/math]。
(1)当[math]\displaystyle{ x_{0}=0 }[/math]时,[math]\displaystyle{ f\left ( x \right ) =f\left ( 0 \right ) +f^{'} \left ( 0 \right ) x+\cdots +\frac{f^{\left(n\right)}\left(0\right)}{n!}\left(x\right)^{n}+R_{n} \left ( x \right ) }[/math]称为麦克劳林公式。
(2)常用的麦克劳林公式:
[math]\displaystyle{ \ \ \ \ }[/math]①[math]\displaystyle{ \ \ e^{x} =1+x+\frac{x^{2} }{2!} +\cdots +\frac{x^{n} }{n!} + o \left ( x^{n} \right ) }[/math]
[math]\displaystyle{ \ \ \ \ }[/math]②[math]\displaystyle{ \ \ \sin x=x-\frac{x^{3} }{3!}+\cdots +\frac{\left ( -1 \right )^{n} }{\left ( 2n+1 \right )! } x^{2n+1} + o \left ( x^{2n+1} \right ) }[/math]
[math]\displaystyle{ \ \ \ \ }[/math]③[math]\displaystyle{ \ \ \cos x=1-\frac{x^{2} }{2!} +\cdots +\frac{\left ( -1 \right )^{n} }{\left ( 2n \right )! } x^{2n}+ o \left ( x^{2n} \right ) }[/math]
[math]\displaystyle{ \ \ \ \ }[/math]④[math]\displaystyle{ \ \ \frac{1}{1-x} =1+x+x^{2} +\cdots +x^{n} + o \left ( x^{n} \right ) }[/math]
[math]\displaystyle{ \ \ \ \ }[/math]⑤[math]\displaystyle{ \ \ \frac{1}{1+x}=1-x+x^{2} -\cdots +\left ( -1 \right ) ^{n}x^{n} + o \left ( x^{n} \right ) }[/math]
[math]\displaystyle{ \ \ \ \ }[/math]⑥[math]\displaystyle{ \ \ \ln_{}{\left ( 1+x \right ) } =x-\frac{x^{2} }{x} +\frac{x^{3} }{3} -\cdots +\frac{\left ( -1 \right ) ^{n-1} }{n}x^{n} + o \left ( x^{n} \right ) }[/math]
[math]\displaystyle{ \ \ \ \ }[/math]⑦[math]\displaystyle{ \ \ \left ( 1+x \right )^{a} =1+ax+\frac{a\left ( a-1 \right ) }{2!}x^{2}+\cdots +\frac{a\left(a-1\right)\cdots \left(a-n+1\right)}{n!}x^{n} + o \left ( x^{n} \right ) }[/math]
[math]\displaystyle{ \ \ \ \ }[/math]⑧[math]\displaystyle{ \ \ \arctan x=x-\frac{x^{3} }{3} +\frac{x^{5} }{5} -\cdots +\frac{\left ( -1 \right )^{n}}{2n+1} x^{2n+1}+ o \left ( x^{2n+1} \right ) }[/math]
三角函数公式
[math]\displaystyle{ a^{2}+b^{2}=c^{2} }[/math]正弦(sin) | [math]\displaystyle{ \sin \alpha =\frac{a}{c} }[/math] | 余割(csc) | [math]\displaystyle{ \csc \alpha =\frac{c}{a} }[/math] | [math]\displaystyle{ \sin \alpha \ \csc \alpha =1 }[/math] |
---|---|---|---|---|
余弦(cos) | [math]\displaystyle{ \cos \alpha =\frac{b}{c} }[/math] | 正割(sec) | [math]\displaystyle{ \sec \alpha =\frac{c}{b} }[/math] | [math]\displaystyle{ \cos \alpha \ \sec \alpha =1 }[/math] |
正切(tan) | [math]\displaystyle{ \tan \alpha =\frac{a}{b} }[/math] | 余切(cot) | [math]\displaystyle{ \cot \alpha =\frac{b}{a} }[/math] | [math]\displaystyle{ \tan \alpha \ \cot \alpha =1 }[/math] |
[math]\displaystyle{ \sin ^{2} \alpha +\cos ^{2} \alpha =1 }[/math] | [math]\displaystyle{ 1+\cot ^{2} \alpha =csc^{2} \alpha }[/math] | [math]\displaystyle{ \tan ^{2} \alpha +1=\sec ^{2} \alpha }[/math] |
[math]\displaystyle{ \sin \left ( \alpha + \beta \right ) =\sin \alpha \cos \beta+ \cos \alpha\sin \beta }[/math] | |
[math]\displaystyle{ \sin \left ( \alpha - \beta \right ) =\sin \alpha \cos \beta- \cos \alpha\sin \beta }[/math] | |
[math]\displaystyle{ \cos \left ( \alpha+\beta \right ) =\cos \alpha \cos \beta -\sin \alpha \sin \beta }[/math] | |
[math]\displaystyle{ \cos \left ( \alpha-\beta \right ) =\cos \alpha \cos \beta+\sin \alpha \sin \beta }[/math] |
[math]\displaystyle{ \sin 2\alpha =\sin \alpha \cos \alpha+\sin \alpha\cos \alpha=2\sin \alpha \cos \alpha }[/math] | |||||||||||||||||||||||||
[math]\displaystyle{ \cos2 \alpha =\cos ^{2}\alpha -\sin ^{2}\alpha =2\cos ^{2}\alpha -1=1-2\sin ^{2}\alpha }[/math]
不定积分常用三角函数公式
|