泰勒公式:修订间差异
第1行: | 第1行: | ||
== 泰勒公式 == |
== 泰勒公式 == |
||
如果函数<math>f\left ( x \right )</math>在<math>x=x_{0} </math>的领域内具有n+1阶导数则 |
如果函数<math>f\left ( x \right )</math>在<math>x=x_{0} </math>的领域内具有n+1阶导数则 |
||
<math>f\left(x\right) =f\left( x_{0} \right)+f'\left ( x_{0}\right)\left(x- |
<math>f\left(x\right) =f\left( x_{0} \right)+f'\left ( x_{0}\right)\left(x-x_{0}\right )+\cdots+\frac{f^{\left(n\right)}\left( x_{0}\right )}{n!}\left(x-x_{0}\right )^{n}+R_{n}\left(x\right ) </math> |
||
其中<math>\xi </math>介于<math>x</math>与<math>x_{0} </math>之间,<math>R_{n}\left(x\right ) =\frac{f^{\left(n+1\right)}\left( \xi \right)}{\left(n+1\right)!}\left(x-x_{0}\right)^{n+1}</math>称之为拉格朗日余项,余项<math>R_{n}\left(x\right)</math>也可以表示为<math>R_{n}\left(x\right)=o\left(\left(x-x_{0}\right)^{n}\right )</math>。 |
其中<math>\xi </math>介于<math>x</math>与<math>x_{0} </math>之间,<math>R_{n}\left(x\right ) =\frac{f^{\left(n+1\right)}\left( \xi \right)}{\left(n+1\right)!}\left(x-x_{0}\right)^{n+1}</math>称之为拉格朗日余项,余项<math>R_{n}\left(x\right)</math>也可以表示为<math>R_{n}\left(x\right)=o\left(\left(x-x_{0}\right)^{n}\right )</math>。 |
2024年12月8日 (日) 10:25的最新版本
泰勒公式
如果函数[math]\displaystyle{ f\left ( x \right ) }[/math]在[math]\displaystyle{ x=x_{0} }[/math]的领域内具有n+1阶导数则 [math]\displaystyle{ f\left(x\right) =f\left( x_{0} \right)+f'\left ( x_{0}\right)\left(x-x_{0}\right )+\cdots+\frac{f^{\left(n\right)}\left( x_{0}\right )}{n!}\left(x-x_{0}\right )^{n}+R_{n}\left(x\right ) }[/math]
其中[math]\displaystyle{ \xi }[/math]介于[math]\displaystyle{ x }[/math]与[math]\displaystyle{ x_{0} }[/math]之间,[math]\displaystyle{ R_{n}\left(x\right ) =\frac{f^{\left(n+1\right)}\left( \xi \right)}{\left(n+1\right)!}\left(x-x_{0}\right)^{n+1} }[/math]称之为拉格朗日余项,余项[math]\displaystyle{ R_{n}\left(x\right) }[/math]也可以表示为[math]\displaystyle{ R_{n}\left(x\right)=o\left(\left(x-x_{0}\right)^{n}\right ) }[/math]。
(1)当[math]\displaystyle{ x_{0}=0 }[/math]时,[math]\displaystyle{ f\left ( x \right ) =f\left ( 0 \right ) +f^{'} \left ( 0 \right ) x+\cdots +\frac{f^{\left(n\right)}\left(0\right)}{n!}\left(x\right)^{n}+R_{n} \left ( x \right ) }[/math]称为麦克劳林公式。
(2)常用的麦克劳林公式:
[math]\displaystyle{ \ \ \ \ }[/math]①[math]\displaystyle{ \ \ e^{x} =1+x+\frac{x^{2} }{2!} +\cdots +\frac{x^{n} }{n!} + o \left ( x^{n} \right ) }[/math]
[math]\displaystyle{ \ \ \ \ }[/math]②[math]\displaystyle{ \ \ \sin x=x-\frac{x^{3} }{3!}+\cdots +\frac{\left ( -1 \right )^{n} }{\left ( 2n+1 \right )! } x^{2n+1} + o \left ( x^{2n+1} \right ) }[/math]
[math]\displaystyle{ \ \ \ \ }[/math]③[math]\displaystyle{ \ \ \cos x=1-\frac{x^{2} }{2!} +\cdots +\frac{\left ( -1 \right )^{n} }{\left ( 2n \right )! } x^{2n}+ o \left ( x^{2n} \right ) }[/math]
[math]\displaystyle{ \ \ \ \ }[/math]④[math]\displaystyle{ \ \ \frac{1}{1-x} =1+x+x^{2} +\cdots +x^{n} + o \left ( x^{n} \right ) }[/math]
[math]\displaystyle{ \ \ \ \ }[/math]⑤[math]\displaystyle{ \ \ \frac{1}{1+x}=1-x+x^{2} -\cdots +\left ( -1 \right ) ^{n}x^{n} + o \left ( x^{n} \right ) }[/math]
[math]\displaystyle{ \ \ \ \ }[/math]⑥[math]\displaystyle{ \ \ \ln_{}{\left ( 1+x \right ) } =x-\frac{x^{2} }{2} +\frac{x^{3} }{3} -\cdots +\frac{\left ( -1 \right ) ^{n-1} }{n}x^{n} + o \left ( x^{n} \right ) }[/math]
[math]\displaystyle{ \ \ \ \ }[/math]⑦[math]\displaystyle{ \ \ \left ( 1+x \right )^{a} =1+ax+\frac{a\left ( a-1 \right ) }{2!}x^{2}+\cdots +\frac{a\left(a-1\right)\cdots \left(a-n+1\right)}{n!}x^{n} + o \left ( x^{n} \right ) }[/math]
[math]\displaystyle{ \ \ \ \ }[/math]⑧[math]\displaystyle{ \ \ \arctan x=x-\frac{x^{3} }{3} +\frac{x^{5} }{5} -\cdots +\frac{\left ( -1 \right )^{n}}{2n+1} x^{2n+1}+ o \left ( x^{2n+1} \right ) }[/math]