用户:流火qwq/高等数学:修订间差异

删除的内容 添加的内容
流火qwq留言 | 贡献
流火qwq留言 | 贡献
 
第17行:
== 泰勒公式 ==
如果函数<math>f\left ( x \right )</math>在<math>x=x_{0} </math>的领域内具有n+1阶导数则
<math>f\left(x\right) =f\left( x_{0} \right)+f'\left ( x_{0}\right)\left(x-_x_{0}\right )+\cdots+\frac{f^{\left(n\right)}\left( x_{0}\right )}{n!}\left(x-x_{0}\right )^{n}+R_{n}\left(x\right ) </math>
 
其中<math>\xi </math>介于<math>x</math>与<math>x_{0} </math>之间,<math>R_{n}\left(x\right ) =\frac{f^{\left(n+1\right)}\left( \xi \right)}{\left(n+1\right)!}\left(x-x_{0}\right)^{n+1}</math>称之为拉格朗日余项,余项<math>R_{n}\left(x\right)</math>也可以表示为<math>R_{n}\left(x\right)=o\left(\left(x-x_{0}\right)^{n}\right )</math>。