信号与系统
信号分类
卷积
1.与单位冲激信号和单位阶跃信号的卷积
①[math]\displaystyle{ f\left ( t \right ) *\delta \left ( t \right ) =f\left ( t \right ) }[/math]
②[math]\displaystyle{ f\left ( t \right ) *\delta \left ( t -t_{0} \right ) =f\left ( t -t_{0} \right ) }[/math]
③[math]\displaystyle{ f\left ( t\right ) *\delta '\left ( t \right )=f'\left ( t \right ) }[/math]
④[math]\displaystyle{ f\left ( t\right ) *\delta ^{\left ( n \right ) } \left ( t \right )=f^{\left ( n \right ) } \left ( t \right ) }[/math]
⑤[math]\displaystyle{ f\left ( t\right ) *\varepsilon \left ( t \right ) =\int_{-\infty}^{t} f\left ( \tau \right )d\tau }[/math]
⑥[math]\displaystyle{ \varepsilon \left ( t \right )*\varepsilon \left ( t \right )=t\varepsilon \left ( t \right )=r\left ( t \right ) }[/math]
⑦[math]\displaystyle{ f\left ( t \right )*r\left (t\right)=\int_{-\infty}^{t}\left [\int_{-\infty}^{k}f\left(\tau\right )d\tau\right ] dk }[/math]
傅里叶变换
常用信号的傅里叶变换表
时域 | 频域 | |
冲激信号 | [math]\displaystyle{ \delta \left ( t \right ) }[/math] | [math]\displaystyle{ 1 }[/math] |
冲激偶信号 | [math]\displaystyle{ \delta '\left ( t \right ) }[/math] | [math]\displaystyle{ j\omega }[/math] |
阶跃信号 | [math]\displaystyle{ \varepsilon \left ( t \right ) }[/math] | [math]\displaystyle{ \pi \delta \left (\omega \right ) +\frac{1}{j\omega } }[/math] |
斜升信号 | [math]\displaystyle{ r\left ( t \right ) =t\varepsilon \left ( t \right ) }[/math] | [math]\displaystyle{ j\pi \delta'\left ( \omega \right ) -\frac{1}{\omega ^{2} } }[/math] |
常数 | [math]\displaystyle{ C(直流分量) }[/math] | [math]\displaystyle{ 2\pi C\delta \left ( \omega \right ) }[/math] |
门函数 | [math]\displaystyle{ g_{\tau} \left ( t \right ) }[/math] | [math]\displaystyle{ \tau Sa\left ( \frac{\omega \tau}{2} \right ) }[/math] |
符号函数 | [math]\displaystyle{ sgn\left ( t \right ) }[/math] | [math]\displaystyle{ \frac{2}{j\omega } }[/math] |
单边指数信号 | [math]\displaystyle{ e^{-at} \varepsilon \left ( t \right ) \;\;\left ( a\gt 0 \right ) }[/math] | [math]\displaystyle{ \frac{1}{a+j\omega } }[/math] |
双边指数信号 | [math]\displaystyle{ e^{-a\left | t \right | } \varepsilon \left ( t \right ) \;\;\left ( a\gt 0 \right ) }[/math] | [math]\displaystyle{ \frac{2a}{a^{^{2} } +\omega ^{2} } }[/math] |
复指数信号 | [math]\displaystyle{ e^{-j\omega _{0}t } }[/math] | [math]\displaystyle{ 2\pi \delta \left ( \omega +\omega _{0} \right ) }[/math] |
余弦信号 | [math]\displaystyle{ \cos \left ( w_{0}t \right ) }[/math] | [math]\displaystyle{ \pi \left [ \delta \left ( \omega +\omega _{0} \right )+\delta \left ( \omega -\omega _{0} \right ) \right ] }[/math] |
正弦信号 | [math]\displaystyle{ \sin \left ( w_{0}t \right ) }[/math] | [math]\displaystyle{ j\pi \left[\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega -\omega _{0} \right)\right] }[/math] |
抽样信号 | [math]\displaystyle{ Sa\left ( at \right ) }[/math] | [math]\displaystyle{ \frac{\pi }{a} g_{2a} \left ( \omega \right ) }[/math] |
标准一次函数 | [math]\displaystyle{ t }[/math] | [math]\displaystyle{ j2\pi \delta '\left ( \omega \right ) }[/math] |
标准反比例函数 | [math]\displaystyle{ \frac{1}{t} }[/math] | [math]\displaystyle{ -j\pi sgn\left( \omega \right ) }[/math] |
余弦函数 | [math]\displaystyle{ \cos \left ( \omega_{0}t+\varphi \right ) }[/math] | [math]\displaystyle{ \pi \left [ \delta \left ( \omega +\omega _{0} \right ) e^{-j\varphi }+ \delta \left ( \omega -\omega _{0} \right )e^{j\varphi }\right ] }[/math] |
正弦函数 | [math]\displaystyle{ \sin \left ( \omega_{0}t+\varphi \right ) }[/math] | [math]\displaystyle{ j\pi \left [ \delta \left ( \omega +\omega _{0} \right ) e^{-j\varphi }-\delta \left ( \omega -\omega _{0} \right )e^{j\varphi }\right ] }[/math] |
冲激序列 | [math]\displaystyle{ \delta _{\tau }\left ( t \right ) =\sum_{n=-\infty}^{\infty} \delta \left ( t-nT_{1} \right ) }[/math] | [math]\displaystyle{ \omega _{1} \sum_{n=-\infty}^{\infty} \delta \left ( \omega -n\omega _{1} \right ) }[/math] |