[math]\displaystyle{ \int \tan x\;dx=\ln_{}{\left | \sec x+\sec x \right | } +C=\ln_{}{\left | \sec x \right | } +C }[/math]
|
[math]\displaystyle{ \int \sec x\;dx=\ln_{}{\left | \sec x+\tan x \right | } +C }[/math]
|
[math]\displaystyle{ \int \cot x\;dx=-\ln_{}{\left | \sec x+\sec x \right | }+C =-\ln_{}{\left | \sin x \right | } +C }[/math]
|
[math]\displaystyle{ \int \csc x\;dx=-\ln_{}{\left | \csc x+\cot x \right | } +C }[/math]
|
[math]\displaystyle{ \int \sec ^{3} x\;dx=\frac{1}{2} \left ( \sec x\tan x+\ln_{}{\left | \sec x+\tan x \right | } \right ) +C }[/math]
|
[math]\displaystyle{ \int \csc ^{3} x\;dx=-\frac{1}{2}\left ( \csc x \cot x +\ln_{}{\left | \csc x+\cot x \right | } \right) +C }[/math]
|
[math]\displaystyle{ }[/math]
|
[math]\displaystyle{ }[/math]
|